Department of Chemistry
Chem 101-Final Exam
Name:
S. No.:
*Answer all questions
*Time allowed is two hours only
Answer Sheet

Question No.	Answer						
1		8		15		22	
2		9		16		23	
3		10		17		24	
4		11		18		25	
5		12		19			
6		13		20			
7		14		21			
Total Score/50							

Good Luck

Periodic table

1. How many grams of CaCl_{2} (formula weight $=111.08 \mathrm{~g} / \mathrm{mol}$), are needed to prepare 130 mL of $0.450 \mathrm{M} \mathrm{CaCl}_{2}$ solution?
a) 6.49 g
b) 111 g
c) 19.5 g
d) 124 g
e) 73.4 g
2. Which of the following would be expected to have the most polar bond?
a) $\mathrm{Br}-\mathrm{Cl}$
b) $\mathrm{Cs}-\mathrm{F}$
c) Cs-I
d) $\mathrm{Al}-\mathrm{O}$
e) $\mathrm{N}-\mathrm{O}$
3. Which of the atoms below has the most exothermic electron affinity?
a) Si
b) Cl
c) Sn
d) P
e) I
4. Consider the following reaction:

$$
2 \mathrm{Al}+3 \mathrm{Cl}_{2} ? \quad 2 \mathrm{AlCl}_{3}
$$

What is the maximum weight of AlCl_{3} (formula weight $=133.48 \mathrm{~g} / \mathrm{mol}$) that could be obtained from a mixture of 0.750 mole of Al and 1.05 mole of Cl_{2} ?
a) 100 g
b) 90.4 g
c) 106 g
d) 93.4 g
e) none
5. As the bond order between two atoms increases:
a) bond energy increases and the bond length increases.
b) bond energy decreases and the bond length decreases.
c) bond energy increases and the bond length decreases.
d) Bond energy increases, but the bond length either increase or decrease.
e) bond energy decreases and the bond length increases.
6. The kind of hybrid orbitals used by chlorine to form bonds in $\mathrm{ClF}_{2}{ }^{-}$is:
a) sp^{3}
b) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
c) sp
d) sp^{2}
e) $\mathrm{sp}^{3} \mathrm{~d}$
7. In the reaction:

$$
\mathrm{NH}_{4}^{+}+\mathrm{NH}_{2} \mathrm{OH} ? \mathrm{NH}_{3}+\mathrm{NH}_{3} \mathrm{OH}^{+}
$$

The two Bronsted-Lowery acids are:
a) $\mathrm{NH}_{4}{ }^{+}$and NH_{3}
b) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{2} \mathrm{OH}$
c) NH_{3} and $\mathrm{NH}_{2} \mathrm{OH}$
d) NH_{3} and $\mathrm{NH}_{3} \mathrm{OH}^{+}$
e) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{3} \mathrm{OH}^{+}$
8. What is the hydroxide ion concentration in a solution that has a $\mathrm{pH}=4.80$?
a) $1.6 \times 10^{-5} \mathrm{M}$
b) $1.0 \times 10^{-7} \mathrm{M}$
c) $6.3 \times 10^{-10} \mathrm{M}$
d) $9.5 \times 10^{-12} \mathrm{M}$
e) $3.3 \times 10^{-7} \mathrm{M}$
9. A compound has an empirical formula $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ and a molecular mass of 292. What is the molecular formula of the compound?(Atomic weights: $\mathrm{C}=12 ; \mathrm{H}=1.01 ; \mathrm{O}=16$)
a) $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{8}$
b) $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{7}$
c) $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{10}$
d) $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{6}$
e) $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{9}$
10. Which of the following salts would form a basic solution in water:
a) NaCl
b) KNO_{3}
c) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d) $\mathrm{NH}_{4} \mathrm{Cl}$
e) none
11. Which of the following pairs of solution will give a precipitate when mixed?
a) $\mathrm{KNO}_{3}(\mathrm{aq})$ and $\mathrm{BaCl}_{2}(\mathrm{aq})$
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
c) $\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)(\mathrm{aq})$ and $\mathrm{CaCl}_{2}(\mathrm{aq})$
d) $\mathrm{NaNO}_{3}(\mathrm{aq})$ and $\mathrm{NaCl}(\mathrm{aq})$
e) None of the above
12. Balance the following oxidation-reduction reaction that occurs in acidic solution:

$$
a \mathrm{I}_{(\mathrm{aq})}^{-}+b \mathrm{ClO}_{(\mathrm{aq})}^{-} ? \quad c \mathrm{I}_{3}^{-}{ }_{(\mathrm{aq})}+d \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

Then the ratio $a / b=$
a) 1
b) 2
c) 3
d) 4
e) 5
13. Which of the following when dissolves in water, forms a basic solution?
a) CO_{2}
b) SO_{2}
c) $\mathrm{K}_{2} \mathrm{O}$
d) SO_{3}
e) NO_{2}
14. A sample of orange juice was found to have a pH of 3.80 . What is the H^{+}concentration (M) in the juice?
a) 1.58×10^{-4}
b) 0.038
c) 2.23×10^{-3}
d) 1.39×10^{-4}
e) 8.92×10^{-5}
15. A 0.10 M solution of a weak monoprotic acid was found to have a $\mathrm{pH}=5.37$. What is K_{a} for the acid?
a) 7.54×10^{-7}
b) 3.65×10^{-6}
c) 4.98×10^{-5}
d) 1.82×10^{-10}
e) 1.14×10^{-9}
16. A student prepared a 0.025 M HCN solution $\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$. Calculate the percent ionization for HCN ?
a) 3.74%
b) 1.32%
c) 0.57%
d) 0.014%
e) 0.94%
17. What is the pH of a buffer prepared by mixing $0.20 \mathrm{M}^{\text {of }} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(\mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ and 0.40 M of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
a) 4.21
b) 2.05
c) 3.11
d) 5.04
e) 5.45
18. Calculate the pH of a 0.10 M solution of KNO_{2} ? $\left(\mathrm{K}_{\mathrm{a}}\right.$ for HNO_{2} is $\left.4.5 \times 10^{-4}\right)$.
a) 8.18
b) 6.11
c) 4.12
d) 9.11
e) 7.45
19. What is the oxidation number of sulfur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$?
a) $3 / 2$
b) 2
c) $5 / 2$
d) 6
e) 5
20. Use VSEPR theory to predict the molecular shape of ICl_{3} ?
a) Planar triangular
b) linear
c) T-shaped
d) bent
e) trigonal pyramidal
21. If 48.7 grams of magnesium chloride (formula mass $=95.3 \mathrm{~g} / \mathrm{mole}$) is dissolved in 4.35 L of water, what is the resulting molarity of the magnesium chloride solution?
a) 0.234
b) 0.322
c) 0.117
d) 0.352
e) 0.911
22. The balanced net ionic equation for the neutralization reaction between magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, and hydrochloric acid, HCl is:
a) $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
c) $2 \mathrm{OH}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$
e) No net ionic equation
23. In iron, which of the following electrons, characterized by the four quantum numbers, has the lowest energy?
a) $n=4, l=0, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
b) $n=3, l=2, \mathrm{~m}_{1}=1, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
c) $n=3, l=2, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
d) $n=3, l=1, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
e) b, c and d
24. The electron configuration for the Mg atom is:
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ or $[\mathrm{Ne}] 3 s^{2}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1} 3 p^{1}$ or $[\mathrm{Ne}] 3 s^{1} 3 p^{1}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ or $[\mathrm{Ne}] 3 s^{1}$
d) $1 s^{2} 2 s^{2} 2 p^{1}$ or $[\mathrm{He}] 2 s^{2} 2 p^{1}$
e) non of the above
25. Which of the following molecules has two lone pairs of electrons around the central atom:
a) SI_{5}^{-}
b) BrF_{3}
c) PF_{5}
d) $\mathrm{PF}_{6}{ }^{-}$
e) SF_{4}

